怎么证明三角形内角和等于180度
的有关信息介绍如下:设三角形ABC,求证:∠A+∠B+∠C=180°。
证法1:
过点A作EF//BC。
∵EF//BC,
∴∠EAB=∠B,∠FAC=∠C(两直线平行,内错角相等),
∵∠BAC+∠EAB+∠FAC=180°(平角18眼督脱供稳声养含时著专0°),
∴∠BAC+∠B+∠C=180°(等量代换),
即∠A+∠B+∠C=180°。
证法2:
延长BC到M,过点C作CN//AB。
∵CN//AB
∴∠A=∠ACN(两直线平行,360问答内错角相等),
∠B=∠NCM(两直线平行,同位角相等),
∵∠ACN+∠NCM+深很点停心我还饭∠ACB=180°(平角180°),
∴∠A+∠B+∠ACB=180°(等量代换),
即∠A+∠B+∠C=180°。
版权声明:文章由 大问百书 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.dawenbaishu.com/life/197797.html