请问来自什么是十六进制数
的有关信息介绍如下:问题补充说明:有那些说说
十六进制
是计算机中地伯派力谓大白治械善斯数据的一种表示方法.同我们日常中的十进制表示法不一样.它由0-9,A-F,组成.与10进制的对应关系是:
0-9对应0-9;
A-F对应10-15;
N进制的数可以用0---(N-1)的数表示超过9的用字母A-F
例如:
10进制的32表示转振尔至笑成16进制就是:20
16进制的32表示成10进制就是:3×16^1+2×16^0=50
6.1为什么需要八粒考厂即甲顺华衡又进制和十六进制?
编程中,我们常用的良跳先决带训远还是10进制……毕竟C收案物材哪钱目鲁肥/C++是高级语言。
比如:
inta=100,b=99;
不过,由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,让路苏灯合派可以更直观地解决问题。
但,二进制数太长了。比如int类型占用4个字节,32位。比如100,用int类型时住粉架湖耐船血的二进制数表达将是:
000000000000000001100100
面对这么长的数进行思考或操作,没有人会喜欢查推两基钱吧刻朝到。因此,C,C++没有提供在代码直接写二进制数的方法。
用16进制或8进制可以解决这个问题。因为,进制越大,数的表达长度也就越短。不兵必立看伟体再活老盾过,为什么偏偏是16或8进制,而不其它的,诸如9或20进制呢?
2、8、16,分别是2的1次方,3次方,4次方。这一点使得三种进制之间可以非常直接地互相转换。8进制或16进制缩短了二进制数,但农富使候广还探自确降保持了二进制数的表达特点。在下面的关于进制转换的课程中,你可训条齐则员务察倒机进周以发现这一点。
6.2二、八、十六进制数转换到十进制数
6.2.1二进制数转换为十进制数
二进制数第0位革的权值是2的0次方,第1位的权值是2的1次方……
所以,设有一个二进制数:01100100,转换为1记0进制为:
下面是竖式:
慢迅特
01100100换算成十进制
第0位0*20=0
第1位0*21=0
第2位1*22=4
第3位0*23=0
第4位0*24=0
第5位1*25=32
第6脱买与处位1*26=64
第7位0*27=0+
--------------掉同感发期素争样-------------
100
用横式计算为:
0*20+0*21+1*22+1*23+0*24+1*25+1*26+0*27=100
0乘以多少都是0,所以我们也可以直接跳过值为0的位:
1*22+1*23+1*25+1*26=100
6.2.2八进制数转换为十进制数
八进制就是逢8进1。
八进制数采用0~7这八数来表达一个数。
八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……
所以,设有一个八进制数:1507,转换为十进制为:
用竖式表示:
1507换算成十进制。
第0位7*80=7
第1位0*81=0
第2位5*82=320
第3位1*83=512+
--------------------------
839
同样,我们也可以用横式直接计算:
7*80+0*81+5*82+1*83=839
结果是,八进制数1507转换成十进制数为839
6.2.3八进制数的表达方法
C,C++语言中,如何表达一个八进制数呢?如果这个数是876,我们可以断定它不是八进制数,因为八进制数中不可能出7以上的阿拉伯数字。但如果这个数是123、是567,或12345670,那么它是八进制数还是10进制数,都有可能。
所以,C,C++规定,一个数如果要指明它采用八进制,必须在它前面加上一个0,如:123是十进制,但0123则表示采用八进制。这就是八进制数在C、C++中的表达方法。
由于C和C++都没有提供二进制数的表达方法,所以,这里所学的八进制是我们学习的,CtC++语言的数值表达的第二种进制法。
现在,对于同样一个数,比如是100,我们在代码中可以用平常的10进制表达,例如在变量初始化时:
inta=100;
我们也可以这样写:
inta=0144;//0144是八进制的100;一个10进制数如何转成8进制,我们后面会学到。
千万记住,用八进制表达时,你不能少了最前的那个0。否则计算机会通通当成10进制。不过,有一个地方使用八进制数时,却不能使用加0,那就是我们前面学的用于表达字符的“转义符”表达法。
6.2.4八进制数在转义符中的使用
我们学过用一个转义符\'\\'加上一个特殊字母来表示某个字符的方法,如:\'\n\'表示换行(line),而\'\t\'表示Tab字符,\'\\'\'则表示单引号。今天我们又学习了一种使用转义符的方法:转义符\'\\'后面接一个八进制数,用于表示ASCII码等于该值的字符。
比如,查一下第5章中的ASCII码表,我们找到问号字符(?)的ASCII值是63,那么我们可以把它转换为八进值:77,然后用\'\77\'来表示\'?\'。由于是八进制,所以本应写成\'\077\',但因为C,C++规定不允许使用斜杠加10进制数来表示字符,所以这里的0可以不写。
事实上我们很少在实际编程中非要用转义符加八进制数来表示一个字符,所以,6.2.4小节的内容,大家仅仅了解就行。
6.2.5十六进制数转换成十进制数
2进制,用两个阿拉伯数字:0、1;
8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;
10进制,用十个阿拉伯数字:0到9;
16进制,用十六个阿拉伯数字……等等,阿拉伯人或说是印度人,只发明了10个数字啊?
16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。字母不区分大小写。
十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……
所以,在第N(N从0开始)位上,如果是是数X(X大于等于0,并且X小于等于15,即:F)表示的大小为X*16的N次方。
假设有一个十六进数2AF5,那么如何换算成10进制呢?
用竖式计算:
2AF5换算成10进制:
第0位:5*160=5
第1位:F*161=240
第2位:A*162=2560
第3位:2*163=8192+
-------------------------------------
10997
直接计算就是:
5*160+F*161+A*162+2*163=10997
(别忘了,在上面的计算中,A表示10,而F表示15)
现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。
假设有人问你,十进数1234为什么是一千二百三十四?你尽可以给他这么一个算式:
1234=1*103+2*102+3*101+4*100
6.2.6十六进制数的表达方法
如果不使用特殊的书写形式,16进制数也会和10进制相混。随便一个数:9876,就看不出它是16进制或10进制。
C,C++规定,16进制数必须以0x开头。比如0x1表示一个16进制数。而1则表示一个十进制。另外如:0xff,0xFF,0X102A,等等。其中的x也也不区分大小写。(注意:0x中的0是数字0,而不是字母O)
以下是一些用法示例:
inta=0x100F;
intb=0x70+a;
至此,我们学完了所有进制:10进制,8进制,16进制数的表达方式。最后一点很重要,C/C++中,10进制数有正负之分,比如12表示正12,而-12表示负12,;但8进制和16进制只能用达无符号的正整数,如果你在代码中里:-078,或者写:-0xF2,C,C++并不把它当成一个负数。
6.2.7十六进制数在转义符中的使用
转义符也可以接一个16进制数来表示一个字符。如在6.2.4小节中说的\'?\'字符,可以有以下表达方式:
\'?\'//直接输入字符
\'\77\'//用八进制,此时可以省略开头的0
\'\0x3F\'//用十六进制
同样,这一小节只用于了解。除了空字符用八进制数\'\0\'表示以外,我们很少用后两种方法表示一个字符。
6.3十进制数转换到二、八、十六进制数
6.3.110进制数转换为2进制数
给你一个十进制,比如:6,如果将它转换成二进制数呢?
10进制数转换成二进制数,这是一个连续除2的过程:
把要转换的数,除以2,得到商和余数,
将商继续除以2,直到商为0。最后将所有余数倒序排列,得到数就是转换结果。
听起来有些糊涂?我们结合例子来说明。比如要转换6为二进制数。
“把要转换的数,除以2,得到商和余数”。
那么:
要转换的数是6,6÷2,得到商是3,余数是0。(不要告诉我你不会计算6÷3!)
“将商继续除以2,直到商为0……”
现在商是3,还不是0,所以继续除以2。
那就:3÷2,得到商是1,余数是1。
“将商继续除以2,直到商为0……”
现在商是1,还不是0,所以继续除以2。
那就:1÷2,得到商是0,余数是1(拿笔纸算一下,1÷2是不是商0余1!)
“将商继续除以2,直到商为0……最后将所有余数倒序排列”
好极!现在商已经是0。
我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了!
6转换成二进制,结果是110。
把上面的一段改成用表格来表示,则为:
被除数计算过程商余数
66/230
33/211
11/201
(在计算机中,÷用/来表示)
如果是在考试时,我们要画这样表还是有点费时间,所更常见的换算过程是使用下图的连除:
(图:1)
请大家对照图,表,及文字说明,并且自己拿笔计算一遍如何将6转换为二进制数。
说了半天,我们的转换结果对吗?二进制数110是6吗?你已经学会如何将二进制数转换成10进制数了,所以请现在就计算一下110换成10进制是否就是6。
参考文献:http://baike.baidu.com/view/230306.htm