有关圆的所有公式。
的有关信息介绍如下:一、周武氢宁五项脱长公式
1、圆的周长:C=2πr(r:半径)
2、360问答半圆周长:C=πr+2r
型补后实变月云二、圆的面积
1、面积:S=π云厂世内际因了r²
2、半圆面积:S=π收介限务慢苏月住一r²/2
三、弧长角度公式
1、扇形弧长:L=圆心角(弧度制)×R=nπR/180(θ为圆心角)(R为扇形半径)
2、扇形面积:S=nπR²/360=LR/2(L为扇形的弧长)
3、圆锥底面半径:r=nR/360(r为底面半径)(n为圆心角)
4、扇形面积公式:S=nπr²/360=rl/2
R:半径,n:弧所对圆心角度数,π:圆周率,L:扇形对应的弧长。
也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n。
四、圆的方程:
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准美深形花抓同倍具右方程是(x-a)^2+(y-b)^2=r^2。
2、圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可文伤持金跟主美输得圆的一般方程是x^2+y^2晚片径+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。
五、圆和点的位置关系:
以点P与圆O的为例(设P是一点,则PO是点到圆心的距顾固病顾令约袁利离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r.
六、直线与圆有3种位置关系:
无公共点弊冲为相离;
有两个公共点为相交;租闹歼
圆与直线有唯一公队计脱丰配假守许块便比共点为相切。这条直线叫做圆的切线,这个唯一的公共点叫做切点.以直线AB与圆O为例增制营杆取双空(设OP⊥AB于P,概但普整依则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。
拓展资料:
一、圆的性质
(1)圆走陆胶朝味形婷补管是轴对称图形,其对称轴是任意一拿全害免分条通过圆心的直线。圆也是中川心对称图形,其对称中心是圆心。
垂径定理:垂直号例味影存许高争铁倒孩于弦的直径平分这条弦,着就自米虽高式几并且平分弦所对的2条弧许充浓者味门。
垂径定理的逆定理:平降衡商基分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
(2)有关圆周角和圆心角的性质和定理
①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
(3)有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆弯返的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AC与BD分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比正方形、长方形、三角形的面积大。
参考链接:圆_百度百科