求极限的21个方法总结
的有关信息介绍如下:如图所示:
利用极限四则运算法则求极限:
函数极限的四则运算法来自则:设有函数,若形记得孩丰效足在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则
lim[f(x)±g(x)]=limf(x)±limg(x)=A±B
lim[f(x)・g(x)]=limf(x)・limg(x)=A・B
lim==(B≠0)。
扩展解再持愿资料:
注:
1、在分式中,分子和分母除以最高次,并计算无限大无穷小,直接代入0;
2、无限根减去无限根,分子的物理化学性质。
3、应用两个特殊的限制;
4、运用洛必达法则。然而,洛必达法则的应用条件是无穷大360问答与无穷大之比,或无穷小与无穷小之比,分子和分母必须是连续可微的函数。它不是无敌的,不能代替其他一切方法,首先是夸张。
5、Mclau进电门差控增始医们兴所rin系列用于扩张,在中国通常被误译为泰勒扩张。
版权声明:文章由 大问百书 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.dawenbaishu.com/answer/130221.html